Blog posts exploring the concept "Zero-Copy"
← Back to all tagsBlog posts exploring the concept "Zero-Copy"
← Back to all tagsWhile this idea might be met with controversy in the current swarm of AI hype, we believe that the advent of sub-quadratic AI models, heterogeneous computing, and unified memory architectures will show themselves as pivotal components to next generation AI system design. The elements are certainly taking shape. As we stand at this technological crossroads, AMD’s evolving unified CPU/GPU architecture, exemplified by the MI300A and its planned successors (MI325, MI350, MI400), combined with their strategic acquisition of Xilinx, offers a compelling case study for re-imagining how AI models can operate.
Read MoreThe Fidelity Framework and its ecosystem of technologies represent more than technical achievements, they embody our core values in executable form. Where our Compact establishes how people and groups interact within the SpeakEZ ecosystem, our technical innovations demonstrate these same principles applied to systems design. This alignment between human values and technical architecture is neither accidental nor superficial; it reflects our belief that sustainable innovation emerges when technological choices reinforce rather than contradict constituent needs.
Read MoreAs a companion to our exploration of CXL and memory coherence, this article examines how the Fidelity framework could extend its zero-copy paradigm beyond single-system boundaries. While our BAREWire protocol is designed to enable high-performance, zero-copy communication within a system, modern computing workloads often span multiple machines or data centers. Remote Direct Memory Access (RDMA) technologies represent a promising avenue for extending BAREWire’s zero-copy semantics across network boundaries. This planned integration of RDMA capabilities with BAREWire’s memory model would allow Fidelity to provide consistent zero-copy semantics from local processes all the way to cross-datacenter communication, expressed through F#’s elegant functional programming paradigm.
Read MoreSpeakEZ’s Fidelity framework with its innovative BAREWire technology is uniquely positioned to take advantage of emerging memory coherence and interconnect technologies like CXL, NUMA, and recent PCIe enhancements. By combining BAREWire’s zero-copy architecture with these hardware innovations, Fidelity can put the developer in unprecedented control over heterogeneous computing environments with the elegant semantics of a high-level language. This innovation represents a fundamental shift in how distributed memory systems interact, and the cognitive demands it places on the software engineering process.
Read MoreHere at SpeakEZ we’re rethinking how developers interact with memory management in systems programming. The conventional wisdom suggests we face a stark choice: embrace the ubiquitous memory burdens of Rust or abdicate all memory concerns and accept the performance penalties of garbage collection. We believe there’s a better way. Mandatory vs. Optional Memory Management Rust’s borrow checker has revolutionized systems programming by statically preventing memory safety issues, but it comes at a significant cost: every line of code must consider ownership and borrowing.
Read MoreWe at SpeakEZ have been working on the Fidelity framework for a while, and it’s been a journey to find the right balance of familiar conventions with new capabilities. Nowhere is that more apparent than in the async/task/actor models for concurrent programming. The Iceberg Model: Familiar on the Surface, Revolutionary Underneath Think of Fidelity’s concurrency model as an iceberg. Above the waterline, it looks remarkably similar to what you already know:
Read MoreThe computing landscape stands at an inflection point. AI accelerators are reshaping our expectations of performance while “quantum” looms as both opportunity for and threat to our future. Security vulnerabilities in memory-unsafe code continue to cost billions annually. Yet the vast ecosystem of foundational libraries, from TensorFlow’s core implementations to OpenSSL, remains anchored in C and C++. How might we bridge this chasm between the proven code we depend on and the type-safe, accelerated future we’re building at an increasing pace?
Read MoreIn the coming waves of “AI” innovation, the computing landscape will continue to fragment into an increasingly divergent array of hardware choices. From embedded microcontrollers to mobile devices, workstations, and accelerated compute clusters, developers will face a challenging decision: build with distinctly different “stacks” for each target or accept the deep compromises of existing cross-platform frameworks. Meanwhile, Python continues its paradoxical ascent, simultaneously becoming the lingua franca of modern computing while quietly imposing an unsustainable tax on engineering resources.
Read More