Blog posts related to the .NET/F# concept "Discriminated-Unions"
← Back to all tagsBlog posts related to the .NET/F# concept "Discriminated-Unions"
← Back to all tagsThe AI industry stands at an inflection point. As detailed in our “Beyond Transformers” analysis, the convergence of matmul-free architectures and sub-quadratic models will lead a fundamental shift in how we build and deploy AI systems. While the research community has demonstrated these approaches can match or exceed transformer performance with dramatically lower computational requirements, our investigation at SpeakEZ has uncovered an intriguing gap: Current tensor-only representations may not optimally capture the heterogeneous computational patterns these models require.
Read MoreWhen we set out to design the Firefly compiler for the Fidelity Framework, one of our core goals was to produce truly minimal native executables. In the world of traditional .NET development, your “Hello World” application carries the weight of the entire runtime and referenced assemblies, resulting in deployments measured in megabytes. For embedded systems, high-frequency trading platforms, or any scenario where every byte matters, this overhead is unacceptable. Our solution involves a revolutionary approach: type-aware tree shaking that operates directly on the F# Compiler Services AST, preserving rich type information to guide precise dead code elimination.
Read MoreThe future of AI inference lies not in ever-larger transformer models demanding massive GPU clusters, but in a diverse ecosystem of specialized architectures optimized for specific deployment scenarios. At SpeakEZ, we’re developing the infrastructure that could make this future a reality. While our “Beyond Transformers” analysis explored the theoretical foundations of matmul-free and sub-quadratic models, this article outlines how our Fidelity Framework could transform these innovations into practical, high-performance inference systems that would span from edge devices to distributed data centers.
Read MoreSpeakEZ’s Fidelity framework with its innovative BAREWire technology is uniquely positioned to take advantage of emerging memory coherence and interconnect technologies like CXL, NUMA, and recent PCIe enhancements. By combining BAREWire’s zero-copy architecture with these hardware innovations, Fidelity can put the developer in unprecedented control over heterogeneous computing environments with the elegant semantics of a high-level language. This innovation represents a fundamental shift in how distributed memory systems interact, and the cognitive demands it places on the software engineering process.
Read MoreThe Fidelity framework aims to create a novel approach to building desktop applications with F#, enabling developers to create native user interfaces across multiple platforms while preserving functional elegance. One of the key challenges in building such a framework is developing a robust layout system that maintains the functional programming paradigm while providing the flexibility and power of established UI frameworks. This article explores how Fidelity can incorporate ideas from modern functional UI frameworks to create a pure F# implementation of a window layout system without external dependencies, relying solely on F# native code and integrated low level LVGL and Skia libraries.
Read MoreThe computing world has fragmented into specialized ecosystems - embedded systems demand byte-level control, mobile platforms enforce strict resource constraints, while server applications require elasticity and parallelism. Traditionally, these environments have forced developers to choose between conflicting approaches: use a high-level language with garbage collection and accept the performance overhead, or drop down to systems programming with manual memory management and lose expressiveness. Beyond Runtime Boundaries The Fidelity Framework represents a fundamental rethinking of this dichotomy.
Read MoreThe embedded systems industry has operated under a fundamental assumption for decades: achieving hardware control requires sacrificing high-level abstractions and type safety. This assumption has created a divide between embedded development and modern software engineering practices, forcing developers to choose between expressiveness and efficiency. The Fidelity Framework challenges this paradigm through a revolutionary approach that delivers hardware type safety with truly zero runtime cost, a breakthrough in hardware/software co-design methodology.
Read More