Blog posts discussing the technical implementation detail "Memory-Layout"
← Back to all tagsBlog posts discussing the technical implementation detail "Memory-Layout"
← Back to all tagsThe AI industry stands at an inflection point. As detailed in our “Beyond Transformers” analysis, the convergence of matmul-free architectures and sub-quadratic models will lead a fundamental shift in how we build and deploy AI systems. While the research community has demonstrated these approaches can match or exceed transformer performance with dramatically lower computational requirements, our investigation at SpeakEZ has uncovered an intriguing gap: Current tensor-only representations may not optimally capture the heterogeneous computational patterns these models require.
Read MoreThe cybersecurity landscape has shifted dramatically in recent years, with memory safety vulnerabilities accounting for approximately 70% of critical security issues in systems software. This reality has prompted governments and industries to mandate transitions to memory-safe languages for critical infrastructure. Yet the economics of wholesale rewrites are daunting: decades of refined C and C++ code represent trillions of dollars in intellectual property and domain expertise. What if, instead of rewriting everything, we could wrap existing code in provably safe interfaces?
Read MoreAs a companion to our exploration of CXL and memory coherence, this article examines how the Fidelity framework could extend its zero-copy paradigm beyond single-system boundaries. While our BAREWire protocol is designed to enable high-performance, zero-copy communication within a system, modern computing workloads often span multiple machines or data centers. Remote Direct Memory Access (RDMA) technologies represent a promising avenue for extending BAREWire’s zero-copy semantics across network boundaries. This planned integration of RDMA capabilities with BAREWire’s memory model would allow Fidelity to provide consistent zero-copy semantics from local processes all the way to cross-datacenter communication, expressed through F#’s elegant functional programming paradigm.
Read More